Effects of a 60 Hz Magnetic Field Exposure Up to 3000 μT on Human Brain Activation as Measured by Functional Magnetic Resonance Imaging
نویسندگان
چکیده
Several aspects of the human nervous system and associated motor and cognitive processes have been reported to be modulated by extremely low-frequency (ELF, < 300 Hz) time-varying Magnetic Fields (MF). Due do their worldwide prevalence; power-line frequencies (60 Hz in North America) are of particular interest. Despite intense research efforts over the last few decades, the potential effects of 60 Hz MF still need to be elucidated, and the underlying mechanisms to be understood. In this study, we have used functional Magnetic Resonance Imaging (fMRI) to characterize potential changes in functional brain activation following human exposure to a 60 Hz MF through motor and cognitive tasks. First, pilot results acquired in a first set of subjects (N=9) were used to demonstrate the technical feasibility of using fMRI to detect subtle changes in functional brain activation with 60 Hz MF exposure at 1800 μT. Second, a full study involving a larger cohort of subjects tested brain activation during 1) a finger tapping task (N=20), and 2) a mental rotation task (N=21); before and after a one-hour, 60 Hz, 3000 μT MF exposure. The results indicate significant changes in task-induced functional brain activation as a consequence of MF exposure. However, no impact on task performance was found. These results illustrate the potential of using fMRI to identify MF-induced changes in functional brain activation, suggesting that a one-hour 60 Hz, 3000 μT MF exposure can modulate activity in specific brain regions after the end of the exposure period (i.e., residual effects). We discuss the possibility that MF exposure at 60 Hz, 3000 μT may be capable of modulating cortical excitability via a modulation of synaptic plasticity processes.
منابع مشابه
Analysis of Memory-Related Brain Activation Maps in Sleep-Depriveation using Functional Magnetic Resonance Imaging
Background and purpose: Insomnia is a common sleep disorder with negative consequences such as decreased quality of life. In this study, the effect of sleep deprivation on memory in both young and older adults was investigated using functional magnetic resonance imaging (fMRI). Materials and methods: In this retrospective study, fMRI data of 40 healthy subjects (17 young and 23 older people) w...
متن کاملPseudo-CT Generation from Magnetic Resonance Imaging by fuzzy look up table algorithm
Introduction: Despite growing interest in the use of magnetic resonance imaging (MRI) in the external radiotherapy design process (RT), Computer Tomography (CT) remains a gold standard and is regarded as a basic imaging modality in radiotherapy. MRI shows the high contrast in soft tissues without any radiation exposure to patients. As a result, MRI is used in functional tissue ...
متن کاملUsing functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas
Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...
متن کاملUsing functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas
Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...
متن کاملScrutiny of brain signals variations in regions Cz, C3 and C4 under Local Exposure of Extremely Low Frequency and Weak pulsed Magnetic Field to promote Neurofeedback systems
Introduction: Researchers have long been interested in the effects of low intensity (less than 500 microtesla) and Extremely Low Frequency Magnetic Fields (ELF-MF, less than 300 Hz) on human’s brain activity. In this study, our purpose was to analyze the effect of local magnetic field pulses around brain regions Cz, C3, C4 on human electroencephalogram (EEG) and induction of resonance effect...
متن کامل